
Sorting Algorithms (II)
2023

Problem Set and Solutions

The Centre for Education in Mathematics and Computing
Faculty of Mathematics, University of Waterloo

www.cemc.uwaterloo.ca

�����



Quicksort: Problem Set

1. Sort the following list of letters in alphabetical order using
quicksort, by choosing the last element as the pivot:

D A H G F C B E

Solution

D A H G F C B E

EBCAD H G F

BA D C F H G

C D G H



Quicksort: Problem Set

2. What ideal property should the pivot have?

Solution

Ideally the pivot should divide the list into sublists that
are approximately equal in size. In practice, the best
way to do this is to choose a random element as the
pivot. If the list is already sorted or almost sorted, then
choosing the first or last element as the pivot will not
divide the list in half.



Quicksort: Problem Set

3. On average, if a list contains n elements, then approximately
how much time will quicksort take in order to sort the list?

Solution

If good pivots are chosen (ones that divide the list in
half) then there will be approximately log2 n pivots. It
then takes approximately n steps to partition the n
elements around the pivot. So on average, quicksort
takes time approximately equal to n log2 n in order to
sort.



How Many Times Can You Split a Value in Half?

Question: If n is a power of 2, how many times can you
split n in half?

Answer: If n = 2x, then n can be split in half x times.

Question: Given n, how do we find x such that n = 2x?

Answer: Logarithms are the inverse of exponents.
If n = 2x then log2 n = x

Therefore, given n, the value of n can be split in half log2 n
times.



Merge Sort: Problem Set

1. Sort the following list of letters in alphabetical order using
merge sort:

D A E G F C B H

Solution

D A E G F C B H

GEAD F C B H

AD E G CF B H

D A E G F C B H

A D E G C F B H

A D E G B C F H

A B C D E F G H



Merge Sort: Problem Set

2. On average, if a list contains n elements, then approximately
how much time will merge sort take in order to sort the list?

Solution

The list will be divided approximately log2 n times. It
then takes approximately n steps to merge the sorted
lists back together. So on average, merge sort takes
time approximately equal to n log2 n in order to sort.



Challenge: Problem Set

1. Quicksort and merge sort are examples of recursive
algorithms. A recursive algorithm solves a problem by
combining the solutions to smaller instances of the same
problem. Create a recursive algorithm that computes the
factorial of a number.

Solution

The factorial of n is defined as:
n! = n× (n− 1)× (n− 2)× (n− 3)× . . .× 1

A recursive algorithm to compute the factorial of n is:
n! = n× (n− 1)!



Challenge: Problem Set

2. A sorting algorithm is considered stable if duplicate elements
maintain their relative order after sorting. For instance, if the
original list contains 5a and 5b in that order, a stable sort will
keep 5a and 5b in that order. If the sorted list ends up having
5b first and then 5a, then the sorting algorithm is not stable.
Of selection, insertion, bubble, quick, and merge sort, which
sorting algorithms are stable?

Solution

Insertion sort, bubble sort, and merge sort are stable.
Selection sort and quicksort are not stable.



Unstable Sorting Algorithms

To see that selection sort and quicksort are not stable, try
sorting the following integers in ascending order:

3a 2 3b 1

For quicksort choose the first element as the pivot.



Challenge: Problem Set

3. Sorting can be sped up using a sorting network. Below is a sorting
network that sorts 6 items.

The leftmost column is the unsorted list. The list elements move through

the sorting network by following the arrows. Each circle represents a

comparison between two elements. The smaller elements in each

comparison follow the higher red arrows and the larger elements follow

the lower blue arrows. The rightmost column is the sorted list.



Challenge: Problem Set

a) Use the sorting network to sort the list: 5 1 6 3 4 2

Solution

5

1

6

3

4

2

1 < 5

3 < 6

2 < 4

1 < 3

2 < 5

4 < 6

1 < 2

3 < 4

5 < 6

2 < 3

4 < 5

3 < 4

1

2

3

4

5

6



Challenge: Problem Set

b) Design a sorting network that sorts 3 items.

Solution

Here is one possibility:

Note that in a sorting network for 3 items it is not
possible to include parallelism.



Challenge: Problem Set

c) Design a sorting network that sorts 4 items.

Solution

Here are two possibilities:

Note that sorting networks are not unique. Also note
that the first option does not include parallelism while
the second option takes advantage of it.


